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В рамках общей нелинейной теории получено точное решение полной нелинейной задачи о 
приращении плотности среды глубин Земли в зависимости от роста деформации. Исходя из не-
классически линеаризированного подхода, показано, что это решение для различных геологиче-
ских сред «внутренне» неустойчиво. С применением неклассически линеаризированного подхода 
и  с учетом нелинейности процесса деформирования и напряженности среды получена формула 
для определения приращения плотности по глубине Земли при произвольном упругом потенциале 
сжимаемых моделей среды. Исходя из концепции «внутренней» неустойчивости, определены пре-
делы применимости полученных результатов. При описании деформаций отдельных материалов 
(сред) с помощью квадратичного упругого потенциала и потенциала типа Мурнагана  получены 
конкретные численные результаты о приращении плотности материалов (сред) при нелинейном 
деформировании. В случае всестороннего сжатия при достижении состояния «внутренней» не-
устойчивости, процесс уплотнения переходит в процесс разуплотнения.  

 
 Введение 
 Развитие интеграций методов исследо-
ваний механики и геологии позволило решить 
ряд проблем структурной геологии, тектоно-
физики и физики Земли. В данной статье, ис-
ходя из общей нелинейной теории механики 
деформируемого твердого тела, удалось по-
лучить точное решение задачи о распределе-
нии плотности сред по глубине Земли в зави-
симости от роста деформации. 
 В последние полвека инкриментальная 
теория механики деформируемого твердого 
тела (Biot, 1965) получила существенное раз-
витие и превратилась в неклассически линеа-
ризированную теорию (НЛТ). В этом огром-
ная заслуга принадлежит академику А.Н. Гу-
зю. Он, его ученики и сотрудники разработа-
ли теоретические (как в смысле вопросов ме-
ханики, так и в смысле математических во-
просов разработки методов решения различ-
ных классов задач) основы данного подхода с 
охватом малых и больших упругих, упруго-
пластических и более сложных процессов де-
формирования применительно к изотропным, 
анизотропным средам в континуальном при-
ближении и композитным материалам в пре-
делах кусочно-однородной модели. С помо-
щью НЛТ поставлены и решены новые клас-
сы задач в различных разделах механики де-
формируемого твердого тела и гидроупругос-

ти (Гузь, 1977; Гузь, 1979; Гузь, 1986а,б; Гузь, 
1990; Гузь и Махорт, 1988). С самого начала 
развития инкриментальной теории и НЛТ ос-
новными областями приложения их результа-
тов оказались геофизика, геодинамика, меха-
ника горных пород, горная механика, текто-
ника и другие разделы наук о Земле (Абасов и 
др., 1993; Абасов и др., 1999; Абасов и др., 
2000; Гузь, 1977).      
 Анализ результатов, полученных в рам-
ках НЛТ тектонофизики (Абасов и др., 1993; 
Абасов и др., 1999; Абасов и др., 2000; Алек-
сандров и др., 2001; Кулиев, 2000; Кулиев, 
2001; Кулиев, 2005а,б), показывает, что они 
по сравнению с результатами классических и 
прикладных подходов более реально отража-
ют естественные процессы,  связанные с де-
формациями, и позволяют также выяснить 
механизмы их протекания. Данная теория по-
зволила при исследовании различных про-
блем структурной геологии, геодинамики, 
сейсморазведки, механики горных пород и 
т.д., наряду с линейными физико-механичес-
кими свойствами среды, также учитывать не-
линейные физико-механические свойства 
среды, геометрические и силовые параметры 
деформируемой системы (Кулиев, 2005а,б). В 
связи с этим представляется целесообразным 
определение параметров внутреннего строе-
ния Земли также в рамках данного подхода. 
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О пределах изменения приращения 
плотности. Используя известное соотноше-
ние об изменении геометрических объектов 
(Гузь, 1986 а) в рамках общей нелинейной и 
линеаризированной теории, рассмотрим пре-
делы изменения приращения плотности мате-
риалов. Из нелинейной теории известно (Гузь, 
1986 а), что 
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где *dV и dV  - объемы бесконечного малого 
материального параллелепипеда соответствен-
но в актуальной конфигурации и в естествен-
ном состоянии; ( )...3,2,1=iAi   - алгебраиче-
ские инварианты тензора деформации Грина. 

Используя (1.1) для  приращения плот-
ности, получаем 
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 С учетом (1.4) из (1.2) находим 
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Известно, что для всестороннего сжатия 
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В случае линеаризированной теории  (в 
координатах начального состояния) в рамках  
теории больших начальных деформаций 
(Гузь, 1986 а) 
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где iλ  - коэффициенты удлинения (укороче-
ния). 

При всестороннем деформировании 
321 λλλ == . Тогда согласно (1.2) и (1.6) 
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При всестороннем сжатии 10 1<< λ . С уче-
том этого неравенства и (1.7) получаем, что 

∞<
∆

<
ρ
ρ0 . Данный интервал с правой сто-

роны может быть уточнен при рассмотрении 
структуры конкретных упругих потенциалов, 
исходя из различных соображений, в частно-
сти, путем исследования проблемы «внутрен-
ней» неустойчивости. Ниже этот вопрос будет 
рассмотрен для ряда материалов. 
 Сравнение формул (1.5) и (1.7) показы-
вает, что результаты по приращению плотно-
сти в зависимости от роста деформации в 
рамках нелинейной и линеаризированной тео-
рии в случае всестороннего сжатия совпада-
ют, что и должно быть. График зависимости 
приращения плотности от роста деформации 
всестороннего сжатия приведен на рис.1. 
 О плотности сред в современных мо-
делях внутреннего строения Земли. Реаль-
ные модели внутреннего строения Земли, в том 
числе и так называемые современные модели 
РЕМ (параметрические модели Земли), приво-
дят к хорошему согласию с данными полевых 
геофизических наблюдений (Буллен, 1978). 
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Рис. 1. Зависимость приращения плотности от роста 

деформации 
 
 Распределение плотности, дебаевская 
температура, параметр Грюнайзена, решеточ-
ная часть коэффициента теплопроводности, 
удельная энтропия среды, адиабатическая тем-
пература, температура плавления и их гради-
енты, скачки энтропии и теплового эффекта 
при фазовых переходах, наклон  кривого фазо-
вого равновесия и теплота кристаллизации для 
мантии и ядра являются основными парамет-
рами внутреннего строения Земли в парамет-
рических моделях (Жарков, 1983). При их оп-
ределении  необходимо предварительно иметь 
сведения о приращении плотности по глубине 
недр. Поэтому очень важно более точно опре-
делять этот параметр с учетом особенностей 
процесса деформирования в реальных услови-
ях. В современных моделях для его определе-
ния применяется уравнение Адамса-Вильям-
сона (Буллен, 1978; Жарков, 1983): 
 

∆
Φ
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где ρ  – плотность среды в рассматриваемой 
глубине, g – ускорение силы тяжести, соот-
ветствующее данной глубине, ρ∆  – прира-
щение плотности, ∆ – приращение глубины, 

ρ
K

=Φ  – сейсмический параметр, 

µλ
3
2

+=K – модуль сжатия; µλ,  – модули 

упругости второго порядка. 

 Несмотря на хорошую согласованность 
результатов формулы (2.1) с результатами 
фактических наблюдений, данная формула не 
позволяет раскрыть в полной мере механизм 
изменения плотности по глубине. При  исполь-
зовании формулы (2.1) сейсмический параметр 
Φ  определяется через скорость упругих про-
дольных pV  и поперечных волн sV , т.е. в виде  
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3
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Эта формула в принципе справедлива только 
для упругих изотропных ненапряженных 
сред, где 
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 На практике скорости упругих волн оп-
ределяются в реальных земных условиях, ко-
торые существенно сложнее, чем используе-
мые при выводе (2.3). Для расширения облас-
ти применимости (2.1) необходимо, чтобы 
при определении скоростей упругих волн 
также учитывались нелинейности процесса 
деформирования и напряженности среды. Тем 
более, что экспериментальные результаты 
(Александров и др., 2001; Альтшулер и др., 
2004; Бакулин и Протосения, 1982; Буллен, 
1978; Воларович и др., 1974; Выжва и др., 
2005; Кулиев, 2000; Кларка, 1969; Сафаров, 
2003; Калинин, 2000; Navrotsky, 1994; 
Thurston and Brugger, 1964; Yin and Rasolo-
fosaon, 1994) показывают, что физико-
механические и плотностные характеристики 
при изменяющихся термобарических услови-
ях не остаются фиксированными (как принято 
в линейных теориях), а нелинейно изменяют-
ся в значительных интервалах. В этих услови-
ях применение (2.3) может внести  сущест-
венные искажения в научные представления о 
внутреннем строении Земли вообще, а также в 
количественные значения отдельных пара-
метров. Поэтому далее в данной статье, исхо-
дя из положений НЛТ, для определения при-
ращений плотности по глубине получено 
уравнение типа Адамса-Вильямсона с учетом 
геометрической, физической нелинейности 
деформаций  и напряженности сред. 
 Неклассически-линеаризированный 
подход (НЛП). В рассматриваемой проблеме 
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геодинамический аспект характеризуется спе-
цифичностью реализации процесса деформиро-
вания в различных геологических средах и ус-
ловиях под действием разнообразных силовых 
факторов космогенной, экзогенной и эндоген-
ной природы. Особую роль при этом играет 
способность деформирования различных пород 
из разных литологических и стратиграфических 
групп. В связи с этим в геодинамических иссле-
дованиях необходимо соответствующим обра-
зом моделировать законы деформирования по-
род. Здесь по аналогии с механикой деформи-
руемого твердого тела предполагается, что с 
достаточной степенью точности эти законы для 
сравнительно жестких сред могут быть уста-
новлены с помощью упругих потенциалов для 
сжимаемых и несжимаемых сред. 
 В рамках НЛТ выделяют (Гузь, 1986а,б) 
три различных варианта теории в зависимости 
от величин деформаций в начальном состоянии, 
т.е. в состоянии до возникновения волнового 
процесса: а) теория больших (конечных) на-
чальных деформаций (т.б.н.д.); б) первый вари-
ант теории малых начальных деформаций 
(сдвиги и удлинения являются малыми по срав-
нению с единицей) (п.в.т.м.н.д.); в) второй вари-
ант теории малых начальных деформаций (до-
полнительно к первому варианту теории малых 
начальных деформаций считается, что компо-
ненты тензоров напряжений и деформаций под-
чиняются закону Гука) (в.в.т.м.н.д.). 
 Также различают два случая представ-
ления плоской гармонической волны. В пер-
вом – изменения расстояний между мате-
риальными частицами за счет начальной де-
формации не учитываются, и скорость рас-
пространения волны названа "естественной" 
или "натуральной" скоростью (Гузь, 1986б; 
Thurston and Brugger, 1964). Во втором – из-
менения расстояний между материальными 
частицами за счет начальной деформации 
учитываются, и скорость распространения 
волны называется "истинной" скоростью. В 
связи с вышеизложенным, при сопоставлении 
теоретических результатов с результатами 
экспериментальных (лабораторных) и поле-
вых сейсмических исследований, необходимо 
различать все эти положения.  
 Наиболее полно  НЛТ распространения 
упругих волн в предварительно напряженных 
средах разработана в (Гузь, 1986б). Получены 

общие формулы для определения кинематиче-
ских и динамических характеристик отражен-
ных и преломленных упругих волн в произ-
вольно однородно напряженной среде в преде-
лах трехмерной линеаризированной эластоди-
намики с привлечением для сжимаемых и не-
сжимаемых изотропных и анизотропных сред 
различных упругих потенциалов в случае ма-
лых и больших деформаций. В частности, в 
(Кулиев и Джаббаров, 1998) на основе (Гузь, 
1986б), для определения скоростей упругих 
волн в нелинейно деформируемых анизотроп-
ных средах получены следующие формулы: 
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где знак "+" перед слагаемой Ω  соответству-
ет квазипродольной Р волне и при этом 

pVV =α ; а знак " – " –  квазипоперечной SV 

волне и при этом svVV =α ; ijnmω  – компонен-
ты тензора четвертого ранга, характеризую-
щие линейные и нелинейные физико-меха-
нические свойства среды и начального на-
пряженного состояния, которые определяются 
с конкретизацией структуры упругих потен-
циалов (Гузь, 1986а,б); αθ – углы падения и 
отражения квазипродольной Р и квазипопе-
речной SV волн. 
 Для вывода уравнения типа Адамса-
Вильямсона с учетом напряженности  сред и 
нелинейности процесса деформирования рас-
смотрим случай 0=θ  при всестороннем сжа-
тии. Тогда  
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 На основе (3.2) для определения сейс-
мического параметра Φ , согласно (2.2), на-
ходим 
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32233333
1

3
4ωωρ .         (3.3) 

 
В этом случае уравнение Адамса-Вильямсона 
приобретает вид: 
 

∆
−

=∆
32233333

2

3
4ωω

ρρ g
,           (3.4) 

 
который является основным для изучения 
приращения плотности пород с приращением 
глубин при учете предварительной напряжен-
ности сжимаемой среды, физической и гео-
метрической нелинейности деформирования.  
 Согласно (Гузь, 1979; Гузь, 1986а), со-
ставляющие тензора αβωij  в данном случае 
определяются в виде: 
 

( )
( ) ,0

00

βααβ

αββααβαβ

δδδδ

δδδδµδδλω

jiij

jijiijij

S −+

+++=
(3.5) 

 
где введены обозначения: для т.б.н.д. и 
п.в.т.м.н.д. 
 

00
2
10 Sa −= λλ ; 00

2
10 Sb += λµ  ,   (3.6) 

 
 и для в.в.т.м.н.д.                                                                                       

                                    
000 Sa −=λ ; 000 Sb +=µ .          (3.7) 

 
Здесь величины 0a  и 0b  - известные алгеб-
раические выражения, содержащие парамет-
ры линейных физико-механических свойств 
среды и начальных напряжений (Гузь, 1986а). 

( )321 λλλλ ==i  - коэффициенты удлине-

ния (укорочения); ijδ  - символы Кронеккера; 
0

0 ββSS = , где 0
ββS  - нормальные компоненты 

тензора обобщенных напряжений в начальном 
состоянии в рамках т.б.н.д.; в случае 
п.в.т.м.н.д. и в.в.т.м.н.д. ββσσ == 00S , где 

ββσ - нормальные компоненты тензора обыч-
ных напряжений в начальном напряженном 
состоянии; в однородном начальном напря-
женном состоянии составляющие тензора де-
формаций определяются в виде:  
 

0
02 εδε ijij = ; 12 2

10 −= λε ; 100 −= λε .  (3.8)    
 

В (3.8) второе выражение соответствуют слу-
чаю т.б.н.д. и п.в.и.н.д., а третье – в.в.т.м.н.д. 
 С учетом (3.5)- (3.7) формуле (3.4) при 
использовании "истинных" скоростей прида-
дим вид: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
∆
∆

00
2
1

2

3
4 SK

g
l λ

ρρ ; 
000 3

2 µλ +=K . (3.9) 

 
 В случае использования "натуральных" 
скоростей в формуле (3.9) необходимо при-
нимать 11=λ . 
 Анализ качественного характера. Из 
формул (2.1) – (2.3) следует, что характер из-
менения приращения плотности зависит от 
характера вариации К для различных сред. 
При этом возможны следующие варианты: 
 
1. Из условий 0>λ , т.е. из Sp VV 2>  и 

0>µ , т.е. из 0>SV , следует, что 0>K ;  

2. Из условий 0>µ  и Sp VV
3

2
>  также 

следует, что 0>K ; 
3. При Sp VV 2→ , т.е. при 0→λ , следу-

ет, что µµ <→<
3
20 K ; 

4. При Sp VV 2<  и 0
3
2

<<− λµ , т.е. при 

SpS VVV 2
3

2
<< , следует, что 

µ
3
20 << K ; 

5. При  Sp VV
3

2
→  следует, что 0→K ; 
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6. При µλ
3
2

−< , т.е. при Sp VV
3

2
< , сле-

дует, что 0<K .  
Известно, что выполнение условий 
 

0
3
2

>+= µλK  и 0>µ             (4.1) 

 
обеспечивает единственность решения задач 
линейной теории упругости, согласно теореме 
Кирхгофа (Гузь, 1986а). 
 В пределах вариантов 1 – 4 примени-
мость формулы (2.1) не вызывает сомнения. 
Существование теоретических возможностей 
вариантов 5 и 6 требует их исследования. Из 
формулы (3.9) следует, что такие возможности 
могут появляться в силу нелинейности дефор-
мирования и напряженности сред. Так, при 
 

00 4
3 KS ≥                         (4.2) 

 
приращение плотности либо равно нулю, ли-
бо отрицательно. Следовательно, возможны 
случаи, когда при достижении определенных 
уровней начальных напряжений в нелинейно 
деформируемой среде может реализоваться 
процесс разуплотнения. Кроме того, формула 
(3.9) применима при выполнении достаточ-
ных условий применимости статического ме-
тода энергетического подхода. При всесто-
роннем деформировании эти условия, соглас-
но (Гузь, 1979; Гузь, 1986а), имеют вид: 
 

0
3
2

000 >+= µλK   и 00>µ .    (4.3) 

 
Выполнение условий (4.3) обеспечивает един-
ственность решения задач НЛТ  при всесто-
роннем деформировании. Данный вопрос 
подробно исследован в (Гузь, 1979; Гузь, 
1986а), где показано, что нарушение условий 
(4.3) соответствует явлению "внутренней" не-
устойчивости. Количественные оценки о 
"внутренней" неустойчивости в (Гузь, 1979; 
Гузь, 1986а,б) получены с использованием 
конкретных упругих потенциалов в пределах 
линейного приближения (в смысле (Гузь, 
1986б)). Такое приближение для традицион-

ных материалов в пределах технических тре-
бований функционирования конструкций, из-
готовленных из них без разрушения, вполне 
обоснованно. Однако для условий глубоких 
недр Земли необходимо исходить из нелиней-
ных соотношений, так как при этом величины 
напряжений могут достигать огромных зна-
чений, и, несмотря на это, «конструкция-
Земля» не теряет своей  несущей способности. 

Поэтому линеаризация по параметру 
µ
p

 в 

данном случае может привести к неверным 
результатам (здесь p  - параметр интенсивно-
сти внешней нормальной нагрузки на единицу 
площади). 
 "Внутренняя " неустойчивость соответ-
ствует потере эллиптичности, более того,  вы-
рождению основных систем уравнений НЛТ. 
Поскольку при этом нарушаются условия 
единственности решений неклассически ли-
неаризированных задач, то появляются не-
единственные решения, что и должно иметь 
место. Это – специфическая неустойчивость 
однородной неограниченной области при за-
данных на бесконечности нагрузках (Гузь, 
1979; Гузь, 1986 а,б). В случае изначально 
изотропных сред начальные напряжения как 
бы играют роль внутренней структуры, по-
добной внутренней структуре композитных 
сред в анизотропном приближении в пределах 
феноменологического подхода. В случае дос-
тижения в докритическом состоянии величин 
напряжений,  близких значениям модулей уп-
ругости (поэтому для исследования задач 
"внутренней" неустойчивости в основных со-
отношениях необходимо сохранять и нели-
нейные относительно параметра нагрузки 
слагаемые), малейшее дополнительное воз-
мущение в некоторых случаях приводит к 
процессу "внутренней" неустойчивости, кото-
рая вообще не характерна для предварительно 
не напряженных изотропных сред. 

Расчетные формулы при использова-
нии различных упругих потенциалов. Для 
получения количественных результатов необ-
ходимо рассмотреть конкретные упругие по-
тенциалы. 

Квадратичный потенциал. Исходя из 
формул (3.6)-(3.9), (4.3) и (Гузь, 1986а,б), в 
рамках т.б.н.д. и п.в.т.м.н.д. при использова-
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нии «истинных» скоростей в случае всесто-
роннего деформирования в нелинейном при-
ближении получаем: 

 
KK )231()( 2

0000 εεε ++= ;       (5.1) 
;3)( 000 εµεµ K+=  

(5.2) 
0332211 εεεε === ; 

;
)21)(1(

1

00 K
y

εε ++
=

lg
y

∆
∆

= 2ρ
ρ

. (5.3) 

 
В линейном приближении (в смысле 

(Гузь, 1986б))  формулам (5.1)-(5.3) придадим 
вид: 

( ) ( )KK 000 31 εε +=  ; 

00 3 εµµ K+= ;             (5.4) 

K
y

)31(
1

0ε+
= .            (5.5) 

 
В рамках в.в.т.м.н.д.:  
 

;
3

)1()( 0
000

σ
εε −=−= KKK            

;00 σµµ +=                      (5.6) 
 

00
0
33

0
22

0
11 3 εσσσσ K====  

K
y

)1(
1

0ε−
=  .                (5.7) 

Здесь ,0
iiσ (i=1,2,3) – компоненты тензора на-

пряжений в начальном состоянии. 
Потенциал типа Мурнагана. Исходя из 

(Гузь, 1986б),  в рамках т.б.н.д. и п.в.т.м.н.д. 
при использовании «истинных» скоростей в 
случае всестороннего деформирования в не-
линейном приближении получаем:  

 
);21)(2( 0

2
02010 εεε +++= aaKK    (5.8) 

,;
23 21 cbaaKcbaa +−=+++=  

 

;)37(3

)233()(
2
0

000

ε

εµµεµ

abc

Kbc

+++

+++++=
 (5.9) 

,
)2)(21(

1
2
02010 εεε aaK

y
+++

=    (5.10) 

 
где a, b, c – модули упругости третьего порядка.  

В линейном приближении (в смысле 
(Гузь, 1986б)) формулам (5.8)-(5.10) придадим 
вид: 

 
( ) ( )

;
23

;2

1

1000

Kcbaa

KaKK

+++=

++= εε
       (5.11) 

 
;)233( 00 εµµµ ++++= Kbc    (5.12) 

 

( )KaK
y

++
=

102
1

ε
.              (5.13) 

 
В рамках в.в.т.м.н.д.: 
 

;)
3

53(

)
23

(2)(

2
0

000

ε

εε

cba

KcbaKK

++−

−−+++=
  (5.14) 

 

;)159(

)33()(
2
0

00

ε

εµεµ

cba

Kbc

+++

++++=
        (5.15) 

 

.
3

53

;
23

;
2

1

2

12
0201

cbaa

Kcbaa
aaK

y

−−−=

−++=
++

=
εε    (5.16) 

 
В линейном приближении (в смысле (Гузь, 
1986б)), формулы (5.14) – (5.16) приобретают 
вид: 

;2)( 0100 εε aKK +=               (5.17) 
 

( ) ( ) 000 33 εµεµ Kbc +++=  ;      (5.18) 
 

;
2

1

10 εaK
y

+
=

231
Kcbaa −++= .      (5.19) 

 
 Согласно (Гузь, 1986б), используя соот-
ношения 22

1
22

1 ; ssll CVCV −− == λλ , можно 
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получить аналогичные результаты в случае 
использования «натуральных» или «естест-
венных» скоростей.  
 Полученные в пределах НЛТ результаты 
(5.8) – (5.19) позволяют определить критиче-
ские параметры напряжений и деформаций, со-
ответствующих явлению «внутренней» неус-
тойчивости в средах и описываемых различны-
ми упругими потенциалами при всестороннем 
деформировании.           
 Критические параметры «внутрен-
ней» неустойчивости. 
Квадратичный потенциал. 
Согласно формулам (5.1) и (5.2) из условий  

0)(0 =εK  следует, что  

2
1)(;1)( 2010 −=−= εε ,            (6.1) 

 
а из условий 0)( 00 =εµ  следует, что 

.
3

)(
0

30 K
µε −=  

Согласно формулам (5.4) получаем, что 
 

3
1)( 10 −=ε ; 

K3
)( 20

µε −= .       (6.2) 

 
Согласно формулам (5.6) получаем, что 
 

1)( 10 =ε ;  
0

20 3
)(

K
µε −= .         (6.3) 

 
Потенциал типа Мурнагана. Согласно 

формулам (5.8) и (5.9) получаем, что 
 

2

2
2
11

3,2010 )(;
2
1)(

a
Kaaa −±−

=−= εε    (6.4) 

( )[ ] (({
) ([

) ] .37

12)433(4

33376)(

2
1

2

2
1

5,40

⎭
⎬
⎫

++

+−+++±+

+++−++= −

µ

µλµ

λε

ab

cbc

bcabc

 

Согласно формулам (5.11) и (5.12) получаем, 
что 

;
)(2

)(
1

10 Ka
K
+

−=ε  

µ
µε

233
)( 20 +++

−=
Kbc

.     (6.5) 

 
Согласно формулам (5.14) и (5.15) получаем, 
что 

({

(

;
3

5

34)
23

(4
23

2)
3

53(2)(

2
1

2
1

2,10

⎪⎭

⎪
⎬
⎫

⎥
⎦

⎤
⎟
⎠
⎞++

⎢⎣
⎡ ++−++±⎟

⎠
⎞−+

++⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++=

−

Kcb

aKcbaKc

bacbaε

 

(6.6) 

( )[ ] ({
) ([

)] .15

94)33(3

3)159(2)(

2
1

2

2
1

4,30

⎭
⎬
⎫++

+−++±+

++−++= −

cb

aKbcK

bccba

µ

ε

 

 
Согласно формулам (5.17) и (5.18) получаем, 
что 
 

;
2

)(
1

0
1 a

K
−=ε

Kbc 33
)( 20 ++

−=
µε .    (6.7) 

 
 Анализ количественных результатов 
«внутренней» неустойчивости. Из структу-
ры соотношений (6.1)-(6.3) следует, что в слу-
чае квадратичного потенциала в рамках всех 
вариантов теории начальных деформаций как 
в нелинейном, так и в линейном приближении 
критическая величина деформаций, соответ-
ствующая «внутренней» неустойчивости в 
случае всестороннего сжатия, определяется из 
одной и той же формулы: 
 

( )
Kкр 30
µε −= .                   (7.1) 

 
Исключение составляют результаты     

т.б.н.д. при линейном приближении, когда приме-
нительно к средам, для которых ,0K>µ  крити-

ческая величина деформаций .
3
1)( 10. −== εε кр  
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Этот результат связан с тем, что в случае 
малых деформаций существует предельный 
переход (Гузь, 1986б) к потенциалу линейного 
упругого изотропного тела и рассматривается 

всестороннее деформирование. Численные ве-
личины критических деформаций для оргстек-
ла, стали 09Г2С, гранита и кварца, вычислен-
ные по формуле (7.1), следующие: 

 
Материал Оргстекло Гранит Кварц Сталь 09Г2С 
( )кр0ε  -0,1193 -0,2577 -0,33 -0,1791 

  
 Из этих  результатов следует, что в рам-
ках квадратичного потенциала, несмотря на то 
что величины деформации значительны, явле-
ние «внутренней» неустойчивости в рассмат-
риваемых материалах может наблюдаться 
лишь при всестороннем сжатии. При всесто-
роннем  растяжении в данном случае оно  не 
обнаруживается. Состояние равновесия мате-
риалов при всестороннем сжатии в пределах 
деформаций, у которых ( ) ,00 крεε <  является 

устойчивым. Данные о физико-механических 
свойствах оргстекла и стали 09Г2С заимство-
ваны из (Гузь, 1986б), белого гранита Сьерра 
–  из (Yin and Rasolofasaon, 1994), кварца –  из 
(Александров и др., 2001).   
 Следовательно, в случае применения 
квадратичного потенциала формулы (3.7) и 
(4.2) при всестороннем сжатии применимы 
для оргстекла при 1193,00 −<ε ,  для стали – 
при ,1791,00 −<ε  для белого гранита Сьерра 
– при ,2577,00 −<ε  для кварца – при 

.3333,00 −<ε  
 Рассмотрение численных примеров для 
стали и оргстекла связано с тем, что получен-
ные теоретические результаты в основном 
имеют методологический характер, и поэтому 
их численные апробации проведены с исполь-
зованием надежных экспериментальных дан-
ных этих материалов, хотя в определенных 
ситуациях полученные численные результаты 
для этих материалов могут представлять так-
же существенный интерес.      
 Более подробно рассмотрим численные 
результаты, полученные для рассматриваемых 
материалов при описании их деформации с 
применением упругого потенциала типа Мур-
нагана, т.е. с помощью формул (6.4) – (6.7). В 
связи с необходимостью определения пределов 
применимости  формул (5.10), (5.13), (5.16), 
(5.19), нужно выяснить из каких уравнений, 

т.е. из 0)( 00 =εµ  или 0)( 00 =εK , вычисля-
ются критические величины деформаций.  
 
а) Оргстекло. Расчеты показывают, что в преде-
лах т.б.н.д. и п.в.т.м.н.д. при всестороннем де-
формировании величины критических деформа-
ций определяются из уравнений   0)( 00 =εµ  и 
согласно формуле (6.4) для случаев сжатия и 
растяжения соответственно равны: 
( ) 1328,0)( 400 −== εε кр

и ( ) .0624,0)( 500 == εε кр
 

При этих величинах деформаций 
 ( )( ) .000 >крK ε  
 При линейном приближении (относи-
тельно параметра нагрузки, в смысле (Гузь, 
1986а, б), из уравнения 0)( 00 =εµ  согласно 
второй формуле (6.5) получаем, что 

,0952,0)( 20. == εε кр  что соответствует слу-
чаю растяжения. В этом приближении явле-
ние «внутренней» неустойчивости при сжатии 
не обнаруживается.  
 В пределах в.в.т.м.н.д. из уравнения 

0)( 00 =εµ  согласно формуле (6.6) получаем, 
что ( ) 1948,0)( 300 −== εε кр ; 

( ) 1907,0)( 400 == εε кр . При этих величинах 

деформаций ( )( ) .000 >крK ε  
 При линейном приближении из уравне-
ния  0)( 00 =εK  согласно первой формуле 
(6.7) получаем, что ( ) .3419,0)( 100 == εε кр  
При этих величинах деформаций 

( ) .000 >крεµ  В этом приближении в случае 
сжатия явление «внутренней» неустойчивости 
не обнаруживается.  
 Таким образом, при всестороннем сжа-
тии для определения приращения плотности в 
данном случае  в рамках т.б.н.д. и п.в.т.м.н.д. 
соответственно необходимо исходить из фор-
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мул (5.10) и (5.16) при ограничениях: 
1328,00 −<ε и .1948,00 −<ε  

 Из анализа вышеприведенных результа-
тов следует, что результаты линейного при-
ближения качественно и количественно отли-
чаются от результатов нелинейного решения. 
Поэтому при рассматриваемых задачах необ-
ходимо исходить из нелинейного решения. 
Поскольку такой результат получен и для 
других здесь рассматриваемых материалов, то 
ниже результаты линейного приближения не 
будут обсуждены. Кроме того, сравнение ре-
зультатов, полученных в случаях т.б.н.д. и 
в.в.т.м.н.д., показывает, что они количествен-
но отличаются, хотя качественные результаты 
аналогичны.  
 
б) Сталь 09Г2С. 
 Как и для оргстекла, для стали в рамках 
т.б.н.д. и п.в.т.м.н.д. из уравнения 0)( 00 =εµ  
согласно третьей формуле (6.4) получено, что 
( ) ;1424,0)( 400 −== εε кр

( ) ( ) 1907,0500 == εε кр ,  
а в пределах в.в.т.м.д. из того же уравнения  
согласно второй формуле (6.6) определено, 
что  
  ( ) ;1826,0)( 300 −== εε кр  

( ) 0707,0)( 400 == εε кр . 
Следовательно, формулы (5.10) и (5.16) в слу-
чае всестороннего сжатия применимы при 

1826,0;1424,0 00 −<−< εε  соответственно.  
 
в) Белый гранит Сьерра.  
 В этом случае в рамках  т.б.н.д. и 
п.в.т.м.н.д. из уравнения  0)( 00 =εK  соглас-
но второй  формуле (6.4) получаем 

,0009,0)( 30. == εε кр  что соответствует 
случаю растяжения. В случае сжатия всегда  

( ) 000 >εK  и ( ) ,000 >εµ т.е. явление 
«внутренней» неустойчивости не обнаружи-
вается. В пределах в.в.т.м.н.д. из уравнения  

0)( 00 =εK  согласно первой формуле (6.6) 
( ) ;0009,0)( 100 == εε кр

( ) 6279,0)( 200 −== εε кр . 

Следовательно, формула (5.10) в случае все-
стороннего сжатия применима при любых 
упругих деформациях, а формула (5.16) –  при 

6279,00 −<ε . 
 
г) Кварц. 
 В этом случае в рамках т.б.н.д. и 
п.в.т.м.н.д. из уравнения 0)( 00 =εµ  согласно 
третьей формуле (6.4) получаем, что 
( ) ,1582,0)( 400 −== εε кр  а из уравнения 

0)( 00 =εK  согласно второй формуле (6.4) – 
( ) .2531,0)( 300 == εε кр  
 В пределах в.в.т.м.н.д. из уравнения  

0)( 00 =εµ  согласно второй формуле (6.6) 
получаем, что ,2082,0)( 30. −== εε кр  а из  

уравнения  0)( 00 =εK  согласно первой фор-
муле (6.6) – ( ) .2185,0)( 100 == εε кр  Следова-
тельно, формулы (5.10) и (5.16) в случае все-
стороннего сжатия применимы при 

1582,00 −<ε  и 2082,00 −<ε . 
 Вышеприведенные численные резуль-
таты для различных материалов свидетельст-
вуют о том, что в пределах НЛТ «внутренняя» 
неустойчивость в случае всестороннего сжа-
тия обнаруживается при 10-и и более процен-
тах деформаций. В обычных условиях мате-
риалы и конструкции, изготовленные из них, 
не могут выдержать  таких уровней нагрузок 
и деформаций. В условиях же глубоких недр 
Земли такие уровни нагрузок и деформаций 
вполне достижимы. Поскольку до указанных 
критических значений условия (4.3) выпол-
няются, то для расчета приращения плотности 
с учетом нелинейности деформирования и  
напряженности сред в этих пределах можно 
использовать формулу (3.9). Естественно, что 
для  анизотропных сред вследствие малости 
сдвиговых жесткостей явление «внутренней» 
неустойчивости будет проявляться при значи-
тельно меньших уровнях нагрузок и дефор-
маций. Также очевидно, что в реальных усло-
виях вследствие трещиноватости,  наличия 
примесей разножесткостных сред, слоистости 
и т.д. при достаточно низких уровнях нагру-
зок и деформаций в теле могут реализоваться 
локальные, приповерхностные и структурные 
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неустойчивости. Однако за геологическое 
время (сотни миллионов и миллиарды лет) 
вполне реально, что в результате аналогичных 
и других процессов деформирования могут 
формироваться условия, при которых появ-
ляются возможности перехода процесса уп-
лотнения сред в процесс разуплотнения наря-
ду с другими механизмами и по механизму 
«внутренней» неустойчивости. 
 Численные результаты по прираще-
нию плотности. Расчеты проведены для раз-
личных материалов с применением потенциала 
типа Мурнагана. Некоторые результаты вы-
числений приведены в табл. 1, 2 и отражены на 
рисунках 2, 3. Результаты табл. 1 получены для 
оргстекла, а табл. 2 – для белого гранита Сьер-

ра. Результаты рис.2 относятся к стали 09Г2С, 
а рис.3 – кварцу. На рисунках линией 1 пока-
заны результаты, полученные в рамках т.б.н.д. 
и п.в.т.м.н.д. в линейном приближении; линией 
2 – в.в.т.м.н.д. в линейном приближении; ли-
нией 3 – т.б.н.д. и п.в.т.м.н.д. в нелинейном 
приближении; линией 4 – в.в.т.м.н.д. в нели-
нейном приближении. Из приведенных резуль-
татов следует, что напряженности сред и нели-
нейности деформирования приводят к сущест-
венным поправкам при определении прираще-
ния плотности. Величины этих поправок зна-
чительно варьируют для различных материа-
лов. С ростом величины деформации различия 
между результатами, полученными в рамках 
т.б.н.д. и в.в.т.м.н.д., растут.  

 
Таблица 1 

Зависимость параметра плотности (у) от изменения деформации 
 

y 
Линейное приближение Нелинейное приближение -ε 

по формуле (5.13) по формуле (5.19) по формуле (5.10) по формуле (5.16) 
0 0,1884 0,1884 0,1884 0,1884 
0,01 0,1829 0,1831 0,183149 0,18303 
0,02 0,1777 0,1780 0,1786 0,177813 
0,03 0,1728 0,1732 0,1746 0,172783 
0,04 0,1682 0,1687 0,1711 0,1679 
0,05 0,1638 0,1644 0,1681 0,163258 
0,06 0,1596 0,1603 0,1656 0,158749 
0,07 0,1556 0,1564 0,1635 0,154402 
0,08 0,1519 0,1527 0,1617 0,1502 
0,09 0,1483 0,1492 0,1603 0,146166 
0,1 0,1448 0,1458 0,1592 0,142265 

 
 

Таблица 2 
Зависимость параметра плотности (у) от изменения деформации 

 
y 

Линейное приближение Нелинейное приближение -ε 
по формуле (5.13) по формуле (5.19) по формуле (5.10) по формуле (5.16) 

0 0,0364 0,0364 0,0364 0,0364 
0,01 0,0031 0,0031 0,003281 0,00315 
0,02 0,0016 0,0016 0,001817 0,001672 
0,03 0,0011 0,0011 0,001306 0,001151 
0,04 0,0008 0,0008 0,001051 0,000884 
0,05 0,0007 0,0007 0,000901 0,000723 
0,06 0,0006 0,0006 0,000805 0,000615 
0,07 0,0005 0,0005 0,000742 0,000538 
0,08 0,0004 0,0004 0,000699 0,00048 
0,09 0,0004 0,0004 0,000671 0,000435 
0,1 0,0003 0,0003 0,000654 0,000399 
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Рис. 2. Зависимость параметра плотности стали 09Г2С 

от роста деформации  
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Рис. 3. Зависимость параметра плотности кварца от рос-

та деформации 
 

В табл.3 приведены численные значе-
ния величин давлений в ГПа при различных 
степенях деформированности ряда материа-
лов (сред) в случае всестороннего сжатия. В 
скобках указан процент вклада нелинейной 
деформации на величину давления. В по-
следней строке приведены критические зна-

чения давлений, соответствующие «внутрен-
ней» неустойчивости. Из приведенных ре-
зультатов следует, что с ростом величин дав-
лений (глубин) вклад нелинейной деформа-
ции в результаты становится значительным 
как в рамках т.б.н.д. и п.в.т.м.н.д., так и в 
рамках в.в.т.м.н.д. 

  
Таблица 3 

 
Учет доли нелинейной деформации при определении величины давления  

при всестороннем сжатии в рамках различных теорий 
 

Оргстекло Сталь 09Г2С Кварц 
-ε т.б.н.д. и 

п.в.т.м.н.д. 
в.в.т.м.н.д. т.б.н.д. и 

п.в.т.м.н.д. 
в.в.т.м.н.д. т.б.н.д. и 

п.в.т.м.н.д. 
в.в.т.м.н.д. 

0,01 0,1769 (9%) 0,1644 (3,1%) 0,052 (15,6%) 0,050 (14,8%) 0,96 (6,6%) 0,95 (6,6%) 

0,05 1,26 (33,1%) 0,9243 (13,8%) 0,447 (48,1%) 0,381 (42,1%) 6,327 (26,6%) 6,03 (26,6%) 

( )кр0ε  5,80 (56,6%) 5,04 (38,4%) 2,686 (72,4%) 3,045 (73,6%) 36,06 (52,6%) 45,75 (59,4%) 
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