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В работе рассмотрена задача математического моделирования разработки нефтяных месторож-

дений при многофазной фильтрации флюидов в многопластовой системе с использованием и сведе-
ний истории разработки, где фигурируют как все традиционно замеряющиеся, так и возможные дан-
ные специально проведенных гидродинамических исследований скважин. При этом используется 
критерий качества, а задача определения относительных фазовых проницаемостей в зависимости от 
водонасыщенности формулируется как задача на минимум функционала и приближенно решается с 
помощью методов теории оптимального управления. 

 
 Процесс гидродинамического модели-
рования разработки нефтяных и газовых за-
лежей является одним из важнейших этапов 
при создании проектных документаций по их 
разработке и предъявляет повышенные требо-
вания к получению широкомасштабной ин-
формации об основных параметрах пластовых 
систем. Известно, что необходимым условием 
применимости созданной модели является 
предварительная адаптация, т.е. согласование 
результатов расчета технологических показа-
телей предшествующего периода разработки с 
фактическими данными. Процесс адаптации 
модели фактически представляет собой реше-
ние задачи восстановления в объеме резер-
вуара объекта многих взаимосвязанных и за-
висящих друг от друга параметров. 
 Адаптация модели в основном произво-
дится на трех уровнях: мега, макро и микро. 
Обычно на мегауровне при неизменной гео-
логической модели, изменяя функции относи-
тельных фазовых проницаемостей, добивают-
ся того, чтобы на всем объекте в целом и, же-
лательно, на каждом из отдельных выбранных 
участков воспроизводились накопленные от-
боры жидкостей. На макроуровне, изменяя на 
площади пластов распределения начальной 
нефтенасыщенности и абсолютной проницае-

мости, подбирая поправочные коэффициенты 
к функциям относительных фазовых прони-
цаемостей по скважинам и блокам, необходи-
мо добиться того, чтобы основные показатели 
разработки, рассчитанные программой моде-
лирования, с одной стороны, и фактические, с 
другой, были близки. При выполнении адап-
тации на микроуровне необходимо подобрать 
такие параметры моделируемого резервуара, 
чтобы воспроизвести основные показатели 
работы для каждой скважины. На этом этапе 
основным изменениям подвергаются распре-
деления на площади объекта типов коллектора 
(поровый, кавернозный, трещиноватый и т.д.), 
и для каждого из них вводятся индивидуаль-
ные зависимости относительных фазовых про-
ницаемостей от водонасыщенности и др. 
 В вышеуказанных случаях вариантов 
адаптации гидродинамических моделей 
фильтрации расхождения между прогнозными 
и фактическими данными могут быть связаны 
как с неточностью исходной информации о 
пласте, так и с несовершенством принятой 
математической модели течения флюидов в 
пласте. Естественно, степень адаптации будет 
тем выше, чем лучше математическая модель 
описывает реальные физические процессы, 
происходящие в пласте. Выбор метода по-
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строения модели нефтяного пласта зависит от 
качества и полноты исходной информации о 
геологическом строении пласта, физических 
свойствах фильтрующихся жидкостей и по-
ристой среды, а также текущей промысловой 
информации. 
 В последние годы в постановке и реше-
нии многомерных многофазных задач теории 
фильтрации достигнут большой прогресс, а 
что касается анализа разработки, настройки 
фактических показателей разработки место-
рождений, т.е. решения задач идентификации, 
определения или уточнения коллекторских 
свойств пласта на основе фактических данных 
исследований и эксплуатации скважин (назы-
ваемые обратными задачами), то здесь дос-
тигнутые результаты менее впечатляющие, 
причем, как правило, обратные задачи явля-
ются некорректными, что существенно ос-
ложняет их решение (Абасов и др., 1990; 
Азиз, Сеттари, 1982; Булыгин В. и Булыгин 
Д., 1990; Закиров и др., 1984; Мирзаджанзаде 
и др., 2004; Бабе и др., 1980; Каневская, 2002; 
Хайруллин, 1996 и многие др.). 
 Одним из существующих допущений, 
принимаемых для сокращения размерности 
задачи, является предположение о двумерно-
сти течения флюидов в пласте и, следователь-
но, возможности усреднения коллекторских 
свойств пласта вдоль вертикальной координа-
ты. Однако такое упрощение физической мо-
дели не позволяет учитывать многие важные 
факторы, основными из которых являются: 
вертикальная неоднородность пласта по кол-
лекторским свойствам, неравмерность дрени-
рования залежи по толщине и т.д. 
 В настоящее время на базе современных 
программных средств создано достаточное 
количество постоянно действующих моделей 
разработки нефтяных залежей. Они имеют 
главным образом один общий недостаток – 
отсутствие надежных данных по фильтраци-
онно-емкостным свойствам пласта и относи-
тельным фазовым проницаемостям. 
 Функции относительных фазовых про-
ницаемостей (ФОФП), входящих в уравнения 
фильтрации многофазных жидкостей, обычно 
определяются экспериментально на малых 
образцах породы (кернах), которые представ-
ляют лишь незначительную часть объема пла-
ста и должны быть модифицированы. Извест-

но, что ФОФП зависят от множества факторов 
(структурной характеристики среды, смачи-
ваемости, градиента давления, истории насы-
щения), и их форма кривых существенно 
влияет на результаты расчетов. Кроме того, 
поскольку реальным коллекторам нефти и 
газа свойственны неоднородности различного 
масштаба, то эти функции должны зависеть и 
от масштаба осреднения. 
 Известны различные методы определе-
ния ФОФП по данным гидродинамических и 
геофизических исследований (Абасов и др, 
1990; 2000; Дахнов, 1975; Кулиев, Аллахвер-
диев, 1975; Палатник, Закиров, 1990; 2001; 
Закиров и др., 1984 и др.) В последнее время 
для определения ФОФП все чаще применяют-
ся методы, основанные на использовании 
гидродинамической информации, накоплен-
ной в процессе эксплуатации залежей нефти и 
газа. При этом параметры, входящие в выра-
жения распределения ФОФП в зависимости 
от насыщенности, определяются из решения 
различными методами обратных задач теории 
фильтрации (Абасов и др., 1990; Булыгин В. и 
Булыгин Д., 1990; Мирзаджанзаде и др., 2004 
и др.). 
 Характерной особенностью развития 
нефтегазодобывающей отрасли в последние 
годы является значительное увеличение до-
бычи углеводородов из глубокозалегающих 
объектов, представленных, как правило, 
сложнопостроенными залежами со сложным 
составом пластовых флюидов, наличием в 
объекте эксплуатации нескольких гидроди-
намически изолированных или взаимосвя-
занных между собой пластов с различными 
физико-геологическими характеристиками. 
По возможности совместная их эксплуатация 
одной сеткой скважин увеличивает годовые 
темпы отбора, сокращает срок выработки 
залежей и тем самым улучшает технико-
экономические показатели разработки по-
добных месторождений. 
 Однако в случае многопластовых ме-
сторождений возможность получения надеж-
ной и достоверной информации о фильтраци-
онно-емкостных свойствах продуктивных 
пластов по данным гидродинамических ис-
следований скважин существенно ограничи-
вается. Наряду с технологическими трудно-
стями, вызвано это, в частности, и тем, что 
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вследствие взаимодействия совместно разра-
батываемых пластов (не только взаимосвя-
занных, но и изолированных тоже) осложня-
ется математическое описание процесса 
фильтрации в этих коллекторах. Происходит 
это из-за необходимости более полного, ком-
плексного учета всей совокупности природ-
ных и технологических факторов (изменение 
физических свойств флюида и коллектора в 
зависимости от давления, многофазность по-
тока, различные виды неоднородности кол-
лектора и др.), присущих указанным место-
рождениям. Как следствие, значительно за-
трудняется решение соответствующих обрат-
ных задач подземной гидродинамики. Ис-
пользование при их решении системы нели-
нейных дифференциальных уравнений в ча-
стных производных наталкивается на такие 
труднопреодолимые препятствия, как некор-
ректность постановки задач в классическом 
смысле, неустойчивость получаемых реше-
ний, нелинейность, отсутствие принципа су-
перпозиции и др. 
 Целью настоящей работы является гид-
родинамическое моделирование трехмерной 
трехфазной фильтрации флюидов при разра-
ботке многопластовых месторождений вос-
произведением поведения объекта. Пусть 
имеется замкнутая залежь произвольной фор-
мы, состоящая из изолированных друг от дру-
га продуктивных пропластков. Каждый про-
пласток характеризуется своей неоднородно-
стью (распределение пористости, проницае-
мости, толщины) (рис.1). Предполагается, что 
вода, нефть и пористая среда слабосжимаемы, 
капилярные и гравитационные силы пренеб-
режимо малы. Гидродинамическое взаимо-

действие пластов осуществляется через сква-
жины, работающие в совместном режиме экс-
плуатации. Скважины могут вскрывать одно-
временно все пропластки или некоторые из 
них, или же только один пласт. 
 Способы разработки таких месторожде-
ний предопределили использование соответ-
ствующей гидродинамической модели – тра-
диционные уравнения Маскета-Мереса (Мас-
кет, 1953) выражающие условия сохранения 
масс, и закон Дарси для нефти, воды и газа 
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Рис. 1. Объемные изображения и профильный разрез исследуемого пласта 
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 Здесь индексы, указывающие номера 
пропластков, для простоты опущены, а индек-
сы “H”, “в” и “q” относятся соответственно к 
нефтяной, водной и газовой фазе. Остальные 
обозначения следующие: 
х, у, z – координаты; 
t- время; 
р(х, у, z, t) – пластовое давление; 
S1(x, y, z) – насыщенность l-й фазой;  
m(x, y, z) – пористость пласта; 

1µ  – вязкость; 
Bl  – объёмный коэффициент флюида; 
RH(p), Rв(р) – растворимость газа в нефти и воде; 
А(x, y, z) – толщина пласта в точке (x, y, z); 
Vl (x, y, z) – компонента вектора скорости 
фильтрации l-й фазы; 
Qlj – интенсивность отбора (поступления l-й фа-
зы через скважину с координатой (xj, yj, zj )); 

−)(ξδ дельта функция Дирака; 
−∇ оператор Гамильтона; 

N – число скважин; 
Fl(Sl) – относительная проницаемость для фазы l. 
 Чтобы замкнуть систему (1)–(4) требу-
ется задать соответствующие начальные и 
граничные условия: 
1. Начальное пластовое давление P0 (x,y,z); 
2. Начальное распределение нефте-, водо- и 

газонасыщенностей; 
),,(),,,(),,,( 000 zyxSzyxSzyxS qвH  

3. Условия на границах элемента пласта; 
4. Режимы работы скважин.  
 С помощью Пакета программы ЕCLIPSE 
фирмы SCHLUMBERGER на конкретном при-
мере, основанном на численном решении урав-
нений (1) – (4), были рассчитаны технологиче-
ские показатели участка нефтяного пласта, со-
стоящего из четырех пропластков с известной 
историей разработки.  
 Размеры участка пласта по горизонталь-
ной плоскости составляют 14,6 гектаров. От-
носительная нефтяная толщина по пропласт-
кам на основании скважинных данных пред-
ставлена в виде карт на рисунках 2-3. 
 Границы участка непроницаемы. На по-
следний год истории разработки на участке было 
десять добывающих скважин. По геологическим 
данным с учетом принятой дискретизации по 
простиранию и глубине залегания для каждого 
выделенного пропластка формируются осред-

нённые параметры (пористость, проницаемость). 
 Далее в блоках введенной сетки расчи-
таны цифровые поля названных параметров и 
построены их карты и кривые распределения 
(рис. 4, 5, 6). 
 Остальные параметры таковы: 
начальные значения пластовых давлений по 
пропласткам: P01 = 115 bar, P02 = 120 bar,    
P03 =139,5 bar, P04=143,1 bar; 
давления насыщения: PH1=78,9 bar, PH2=82,4 
bar, PH3=95,5 bar, P04=97,8 bar; 
начальные значения водонасыщенности по 
пропласткам: 0

2вS =0,276; 0
2вS =0,299; 

0
3вS =0,45; 0

4вS =0,45; β в=4,1 Е –5 1/bar; 
β cp=1,45 E –5 1/bar; µ в=0,69ср; ρH = 860 кг/ м3 ; 
ρв=1014 кг/м3; ρq=0,92 кг/м3. 
 PVT зависимости отдельных фаз приве-
дены на рис. 7. 
 При восстановлении истории разработ-
ки наиболее надежной промысловой инфор-
мацией являлись динамические пластовые 
давления, отборы воды, отборы жидкости, 
суммарный отбор флюидов, водный процент в 
суммарной жидкости и поровый объем пла-
ста. До восстановления истории разработки 
были подобраны относительные фазовые 
проницаемости в стандартной форме в виде:  

( ) ( ) ( ) 22 ;1 bbb
s

H SsfSf =−=  (рис. 8, пунктир-
ными линиями). 
 Показатели динамики отборов показаны 
для двух вариантов – исходного и адаптирован-
ного. Исходный вариант получен путем аппрок-
симации только данных параметров скважин на 
площадь объекта, а адаптированный – путем та-
кой же аппроксимации, но при этом к данным по 
скважинам добавлены предполагаемые распре-
деления в межскважинном пространстве. На-
пример, для абсолютной проницаемости из ана-
лиза керна известны (или вообще отсутствуют) 
только некоторые данные по отдельным скважи-
нам. С помошью интерполяции рассчитываются 
все значения проницаемости для каждой сеточ-
ной точки. Однако эти значения пока неточные, 
и они адаптируются (корректируется) в ходе вос-
становления истории – на этапе сопоставления 
фактических и расчетных значений отбора жид-
кости. Аналогичным образом корректируется 
поровый объем (если геологические запасы уг-
леводородов определены не достаточно точно). 
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Рис. 2. Карта относительной нефтяной толщины для пропластков 1 и 2 
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Рис. 3. Карта относительной нефтяной толщины для пропластков 3 и 4 
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Рис. 4. Карта пористости для пропластков 1 и 2 
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Рис. 5. Карта пористости для пропластков 3 и 4 
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Рис. 6. Зависимость абсолютной проницаемости от пористости на основе анализа  керна 
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Рис. 7.  Данные по PVT 
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Рис. 8. Относительные фазовые проницаемости для воды и нефти 

 
 Далее сопоставляется характер измене-
ния накопленных отборов по отдельным фа-
зам, корректируются PVT свойства, ОФП, ес-
ли это необходимо. При адаптации модели 
были использованы данные фактической экс-
плуатации объекта за 40 лет. Результаты рас-
четов показаны на рисунках 9 и 10, где даны 
основные технологические показатели разра-
ботки участка по годам в течение периода ис-
тории разработки. 
 На рис. 11 дано сопоставления расчет-
ных и фактических значений средневзвешен-
ных пластовых давлений в процессе разработ-
ки. Хорошая согласованность результатов 
фактических и расчетных значений показате-
лей разработки исходного и адаптированного 
вариантов позволяет определиться в функци-
ях относительных фазовых проницаемостей, 
трендовые зависимости которых от водона-
сыщенности имеют вид (рис 8): 
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 Адаптация модели к условиям пласта и 
истории его разработки производится с по-
мощью минимизируемых критериев качества 
(Закиров, 1997): 
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Здесь j – номер замера на скважине; 
N – количество проведенных замеров;  

−факрас PP ~~
 среднее расчетное и фактиче-

ское пластовые давления в залежи в момент 
времени t; 

−факрас KK ~,~
 среднее расчетное и фактиче-

ское значения коэффициента проницаемости в 
залежи; 
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Рис. 9. Сопоставление фактических и расчетных дебитов 
 

 

 
 

Рис. 10. Изменения  относительного процента воды в общей жидкости 
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Рис. 11. Сопоставление фактических и расчетных средних пластовых давлений 
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−факрас ФФ ~,~
 среднее расчетное и фактиче-

ское значения порового объема; 
−j

в
j
в QS , водонасыщенность призабойной 

зоны и дебит по воде на момент проведения j- 
го замера на скважине. 
 Индексы рас и фак обозначают расчет-
ное и фактическое, Ск, Сф, Cs, Cq − норми-
рующие множители. 
 Через ur обозначен вектор управляющих 
параметров. 
 В качестве управляющих параметров 
выступают следующие; 
1. Коэффициент пористости пласта; 
2. Коэффициент проницаемости пласта; 
3. Пороги подвижности для нефти SH и во-
ды Sв; 
4. Параметры относительных фазовых про-
ницаемостей для нефти и воды, как коэффи-
циентов нефте-водонасыщенности. 
 Отметим, что в случаях отсутствия по 
различным причинам исследований, позво-
ляющих определять текущие параметры по 
каждому отдельному пласту, предлагается 
проводить адаптацию истории разработки ме-
сторождений для фиктивных параметров, но с 
относительно коротким временем прогнозиро-
вания, обеспечивающим надежную точность. 
 Таким образом, в условиях неполноты, 
нечеткости исходной геологической и промы-
словой информации рассмотренный вариант 
математического моделирования многофаз-
ных фильтрационных процессов в многопла-
стовых месторождениях дает возможность 
целенаправленно и эффективно уточнять гид-
родинамические модели, корректировать сис-
тему разработки на каждом этапе познания 
залежи с целью улучшения прогнозирования 
технико-экономических показателей добычи 
и повышения коэффициентов углеводородо-
отдачи пластов. 
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