© Б.Г.Каландаров, 2008

ТИПОМОРФНЫЕ СВОЙСТВА СФАЛЕРИТА ПОЛИМЕТАЛЛИЧЕСКИХ МЕСТОРОЖДЕНИЙ МАЛОГО КАВКАЗА (Азербайджанская часть)

Б.Г.Каландаров

Бакинский Государственный Университет AZ1073, Баку, ул. 3.Халилова, 23

В статье изложены некоторые типоморфные особенности сфалерита месторождений полиметаллических руд Малого Кавказа. Типоморфизм сфалерита рассматривается в различных аспектах: вариации состава минерала в месторождениях разных рудных формаций и изменения его в процессе рудообразования от ранних генераций к поздним, а также в зависимости от его нахождения в рудных парагенезисах.

Возможности применения изучения типоморфизма минералов в решении ряда генетических вопросов эндогенного рудообразования и в практике геологоразведочных работ изложены в работах Ф.В.Чухрова, Н.В.Петровской, Д.П. Григорьева, А.И.Гинзбурга, А.А.Годовикова, М.Г.Добровольской, Т.Н.Шадлун и многих других исследователей. Особенности типоморфизма минералов руд ряда полиметаллических месторождений освещены также в публикациях самого автора (Каландаров, 2004; Рамазанов и др., 2004).

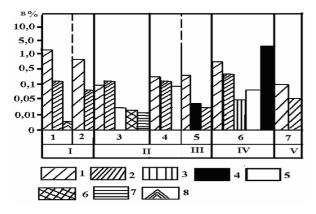
Сфалерит является одним из основных типоморфных минералов полиметаллических месторождений. Он относится к переменным по составу минералам, четко фиксирующим незначительные изменения в минералообразующей среде.

Особенности типоморфизма сфалерита нами рассматриваются в различных аспектах: вариации состава сфалерита в месторождениях разных рудных формаций и изменение его в процессе рудообразования от ранних его генераций к поздним в отдельных месторождениях, а также в зависимости от его нахождения в рудных парагенезисах. Исследование состава сфалерита базируется на собственных и литературных аналитических данных, полученных различными методами: полный химический анализ, микрозондовый, количественный и полуколичественный спектральный и лазерный микроспектральный анализы.

В Мехманинском месторождении, принадлежащем к собственно-полиметаллической формации, сфалерит проявляется в пи-

рит-халькопирит-сфалеритовой и сфалеритгаленитовой рудных стадиях. Характерными элементами-примесями его являются As, Sb, Mn, Au, Ga, Fe, Bi, Sn, In, Cu, Ag. Содержание железа в сфалерите пирит-халькопиритсфалеритовой стадии не превышает 4,6%, кадмия — 0,2%. По данным А.С.Гейдарова, Г.Х.Эфендиева и др. (1966), содержание железа в сфалеритах Мехманинских руд варьирует от 0,39 до 2,21%, а Б.А.Балакишиевой (1964) от 0,04 до 4,0%. Графическое изображение распределения содержаний главных элементов-примесей сфалерита полиметаллической формации дано на рисунке 1.

Сфалерит-галенитовая стадия является главной продуктивной стадией; проявляется она во всех рудных жилах. Сфалерит II этой стадии прозрачен и не содержит продуктов распада твердого раствора. Содержание железа в нем не превышает 0,2%, а количество кадмия увеличивается до 0,84%. В этой же стадии в ассоциации со сфалеритом выделяется блеклая руда, взаимоотношение которой со сфалеритом II свидетельствует о ее более позднем, но ранее халькопирита III и галенита I выделении.


Характерной особенностью сфалеритов Мехманинского месторождения является также повышенная их золото- и сереброносность (табл. 1).

По золотоносности выделяются два типа сфалеритов. В первом типе одновременно присутствуют золото и серебро с содержаниями до 2,0 г/т и 23,0-38,22 г/т соответственно. В другом типе оба эти элемента отсутствуют (табл. 1).

Таблица 1

Содержания золота, серебра и меди в сфалеритах Мехманинского месторождения
(по данным Н.Р.Ильясова, 1974).

Наименования жил и выработки	Кол-во			
	анализов	Сфалерит		
		Au, Γ/T	Ag, Γ/T	Cu, %
Дмитриевская, шт.№1	2	0,08	25,0	0,06
Спиридоновская, шт.№37	2	2,0	23,0	0,06
Жила №5, шт.№30	2	-	-	-
Жила №2, шт.№35	2	1,8	23,2	0,06
Кургушун-Цакер, шт.№№21, 22	6	0,04	31,69	0,01
Жила «Б», шт.№№15, 27, 40	8	сл.		0,06

Рис. 1. Содержания главных элементов-примесей в сфалерите месторождений различных полиметаллических формаций.

1–8 — элементы-примеси: 1–железо; 2-кадмий; 3–марганец; 4–медь; 5– кобальт; 6–селен; 7–теллур; 8-индий. 1-7 — рудные объекты.

I-V-Полиметаллические формации: 1 собственно полиметаллическая (1-Мехманинское, месторождение, 2-Гюмушлукское месторождение); II-колчеданно-полиметаллическая (3-Агдаринское месторождение, 4-Ковурмадаринское); III-золото-полиметаллическая (5-Дагкесаманское месторождение); IV-медно-полиметаллическая (6-Ашагы-Оксюзлинское рудопроявление); V-баритполиметаллическая (7-Башкишлакское месторождение).

Другой особенностью сфалеритов данного месторождения является их редкометальность. Постоянными их примесями являются Сd (0,11-0,38%; в среднем 0,22%), In (0,0025–0,029%, в среднем 0,021%) и Тl (0,0001-0,0003%, в среднем 0,0002%) (Гейдаров, Эфендиев и др., 1966). Согласно данным Г.Х.Эфендиева (1957), сфалериты различных генераций показывают повышенные содержания кадмия: сфалерит I марматитового типа, темноокрашенный – 0,34%, сфалерит II, тем-

но-серый — 0,21%, медово-желтый — 0,82%. Согласно данным А.С.Гейдарова, Г.Х. Эфендиева и др. (1966), сфалерит является также основным концентратором индия (до 210 г/т). Б. А.Балакишиева (1964) в качестве основных концентраторов индия в полиметаллических месторождениях называет халькопирит (до 460 г/т) и сфалерит (до 340 г/т).

Разновидности сфалерита — марматит и клейофан — содержат элементы-примеси в различных количествах. В целом, содержание селена в сфалеритах колеблется от 0,61 г/т в медово-желтом клейофане до 2,3 г/т в сероватом марматите. В медово-желтом и зеленовато-желтом клейофане и светло-сером марматите соотношение Se:Те составляет 1:1,2. В темно-сером с черноватым оттенком марматите эта величина доходит до 1:1,8.

Сфалерит является широко распространенным минералом колчеданно-полиметаллических руд Агдаринского месторождения и встречается в трех генерациях. Практический интерес представляет сфалерит второй и третьей генераций. Сфалерит II связан с кварц-сфалерит-халькопиритовой ассоциацией, сфалерит III - с кальцит-галенитсфалеритовой. Он характеризуется широким набором изоморфных примесей - Fe, Co, Cd, Cu, Sb, концентрация которых варьирует в различных генерациях минерала. Сфалериты Агдаринского месторождения отличаются от сфалеритов Парагачайского месторождения и Ковурмадаринского рудопроявления, расположенных в пределах одного и того же рудного района (Ордубадского), присутствием Со и Sb, значительным содержанием меди

Б.Г.Каландаров

(0,13-0,16%), а также полным отсутствием марганца (табл.2). В них установлены селен (0.4-31.5 г/т) и теллур (4.0-10.6 г/т). Соотношение Se:Te составляет 1:0,64. К важнейшей примеси относится ртуть, являющаяся чувствительным индикатором геохимической зональности. Содержание железа в сфалеритах Агдаринского месторождения не очень-то высокое. Оно колеблется в пределах 0,11-0,28%. Согласно представлениям М.Д.Добровольской (1989), на степень железистости сфалерита влияют физико-химические условия его кристаллизации. Главным фактором, определяющим высокую железистость сфалерита, является низкая активность серы в растворе. Образование, как в данном случае, безжелезистого и маложелезистого сфалерита происходило при большой активности серы. Различная активность серы в минералообразующей среде явилась причиной не только изменения состава сфалерита, но и образования его в различных парагенетических ассоциациях: с пирротином, пиритом, халькопиритом и галенитом. Существенное

значение при этом могли также иметь термодинамические условия.

Сфалерит Дагкесаманского месторождения представлен в основном крупнозернистыми агрегатами, иногда в тесном срастании с халькопиритом и галенитом. Крупные выделения минерала содержат единичные зерна пирита куб-октаэдрического габитуса. В массивных и полосчато-брекчиевидных рудах агрегаты сфалерита сцементированы кальцитом. Отдельные зерна сфалерита содержат тонкую и редкую эмульсионную вкрапленность халькопирита без видимой закономерной ее ориентировки.

Сфалерит отлагается в двух генерациях, создавая различные парагенетические взаимосвязи с галенитом. Сфалерит I интенсивно корродирует ранний пирит и содержит эмульсионную вкрапленность халькопирита, в свою очередь сечется поздним пиритом и прожилками халькопирита. Поздний сфалерит представлен зернами серовато-зеленого цвета и является наложенным на минеральные ассоциации первой и второй стадии минерализации.

 Таблица 2

 Химический состав сфалеритов из некоторых полиметаллических месторождений Малого Кавказа (%)

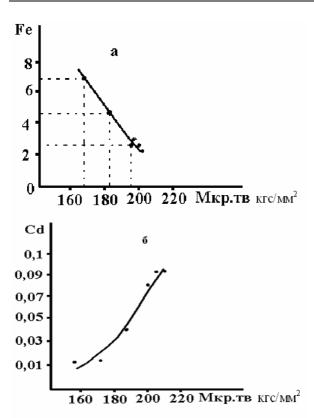
Месторождения и рудопроявления	Zn	Fe	Cd	Со	Мо	Cu	Sb	S	Сумма
Дагкесаманское	65,21 65,21	1,06 1,12	-		-	0,03 0,03	-	33,42 33,42	99,71 98,67
Тутхунское	64,52 65,30	0,03 0,62			0,1 1,0	0,02 0,20		34,7 32,7	99,29 99,74
Агдаринское	65.70 66.40	0,28 <u>0,11</u> 0,2	0,18 0,39 0,28	0,02 0,04	-	0,13 0,16	0,06 0,01	33,0 32,5	99,37 99,56
Ковурма- даринское	66.20 66.70 66.85 66.60 65.84	0,21 0,84 0,14 0,18 0,63 0,4	0,72 0,31 0,37 0,25 0,35 0,32		0,16 0,12 0,09 0,15 <u>0,08</u> 0,12	- - - -	- - - -	32,64 32,46 32,26 32,20 32,50	99,57 100,45 99,70 99,38 99,40

С наличием элементов-примесей (Fe,Cu) в сфалерите непосредственно связана его твердость (табл.3), пределы изменения этого физического параметра составляют 164-299,4 кгс/мм². Установлено, что с увеличением железа повышается микротвердость сфалерита, т.е. микротвердость минерала является в некоторой степени индикатором его состава. В сфалерите Дагкесаманского месторождения при изменении твердости от 164 до 284 кгс/мм² содержание железа изменяется от 6,20 до 2,19 %. Сфалерит является главным минералом-носителем такого редкого элемента как кадмий. Содержание его в сфалеритах Дагкесаманского месторождения изменяется от 0,0011 до 0,096 %. Анализируя данные по микротвердости сфалерита и содержания в нем кадмия, наблюдаем закономерную связь между этими двумя параметрами, иными словами, с увеличением в нем содержания кадмия микротвердость сфалерита повышается.

Сфалериты из руд медно-полиметаллической формации наблюдаются в значительном количестве в рудопроявлениях Килисали и Оксюзли. Сфалерит образует разнозернистые агрегаты, темные по окраске, относящиеся к железистым разностям. Под микроскопом наблюдается двойниковое строение. Химическим анализом, произведенным в химической лаборатории ИГЕМ АН РФ, в составе сфалерита в качестве примесей установлены: Pb, Ni, Co, Cu, Ag, Au, Fe; спектральным анализом, помимо указанных, также обнаружены Mn, Ga, Cd, Ti, Mg. Постоянными примесями из указанных являются Си, Fe, Cd, содержание их соответственно составляет 1,45-5%; 0,94-2%; 0,4%.

Сфалерит барит-полиметаллической формации рассматривается на примере Баш-

кишлагского месторождения, особенности минерального состава руд которого детально охарактеризованы П.С.Гаврилюк (1974). Сфалерит, тесно ассоциируя с пиритом, халькопиритом, галенитом, блеклой рудой, борнитом и др. минералами, образует гнездообразные и полосчатые скопления в лежачем боку баритовых жил. Выделяются две разновидности: светлоокрашенный в зеленовато-желтый и янтарный цвета, близкий к клейофану, и темно-коричневый до черного, близкий к марматиту. Встречаясь вместе, последний всегда преобладает над первым.


Микротвердость сфалерита колеблется в широких пределах – от 169 до 232 кг/мм². Среднее значение – 221 кг/мм² (рис.2). Наиболее часто сфалерит наблюдается в срастании с халькопиритом, галенитом и блеклой рудой. С пиритом он образует гипидиоморфнозернистые структуры срастания, часто переходящие в коррозионные структуры замещения пирита сфалеритом. Иногда он полностью замещает серный колчедан, образуя цементоподобные структуры. В сплошных полях часто встречаются корродированные зерна пирита.

Устанавливается тесная связь пирита с халькопиритом. Последний корродирует сфалерит. Часто наблюдается эмульсионная вкрапленность халькопирита в сфалерите. Очень часто отмечаются неправильные эмульсионные округлые, червеобразные и пламеневидные выделения халькопирита в сфалерите – продукты распада их твердых растворов, возникшие в результате собирательной кристаллизации. Из более поздних минералов сфалерит наиболее интенсивно замещается борнитом. Часто борнит образует вокруг сфалерита заливообразные реакционные каемки.

 Таблица 3

 Микротвердость и элементы-примеси сфалерита Дагкесаманского месторождения

N_0N_0	Микротвердость,	Элементы-примесы			
обр.	кгс/мм ²	Fe	Cu		
63	164	6,2	0,06		
59	182	4,55	0,27		
69	196	2,5	0,6		
58	204	2,78	0,44		
65	208	2,32	0,47		
51	214	2,19	0,64		

Рис. 2. Зависимость микротвердости сфалерита от содержания железа (а) и кадмия (б).

Взаимоотношения сфалерита с ассоциирующими минералами свидетельствуют о выделении его до пирита и кварца первой генерации, одновременно с халькопиритом, галенитом, гипогенным борнитом, блеклой рудой, выделение которых продолжалось и после образования сфалерита.

Характерными элементами-примесями сфалерита являются (в %): As (до 0,1%), Sb (0,2%), Ag (0,001-0,003), Ga (0,001-0,003), Cd (0,001-0,05), Mn (0,03-0,1), Ni (0,001 %), Ва (0,05). Их содержания, кроме галлия и никеля, значительно превышают кларковые значения. Заметное количество сурьмы и мышьяка связано, по-видимому, с включениями блеклой руды. Температура образования сфалерита 220–280° и 340–380°С.

Из вышеизложенного можно сделать следующие выводы.

Сфалериты руд исследованных формаций характеризуются значительной вариацией содержания железа. Как следует из таблиц 1, 2, 3, содержание его колеблется в пределах от 0,10 до 6,2 %. В то же время следует отметить, что высокая железистость являясь гео-

химическим признаком и характерна только для сфалеритов Дагкесаманского месторождения (1,06-6,2%), по которому можно устанавливать его парагенетические ассоциации с другими сульфидами. Сфалериты месторождений остальных формаций отличаются очень низким содержанием железа (0,1–1,52 %).

Главным фактором, определяющим высокую железистость сфалерита, является низкая активность серы в растворе. Образование безжелезистого и маложелезистого сфалерита происходило при большой активности серы. Различная активность серы в минералообразующей среде явилась причиной не только изменения состава сфалерита, но и образования его в различных парагенезисах: с пирротином, пиритом, халькопиритом и галенитом.

Сфалериты из месторождений различных формаций характеризуются почти постоянным набором элементов-примесей, но содержания каждого из них неодинаковы. Различные содержания ведущих примесей (Fe, Mn, Cd, Cu, Co, Hg) характерны для ранних и поздних генераций сфалерита. Установлено, что от ранней генерации к поздней в сфалерите уменьшается количество Fe, Mn, Co, иногда увеличиваются содержания Cd, Hg, иногда Ga.

Формы нахождения и закономерности распределения элементов-примесей в сфалерите различные. При изучении поведения Сd в сфалерите установлено, что значительные количества его наблюдаются в маложелезистых сфалеритах. Относительно высокие содержания меди (до 1,45 %) в сфалеритах характерны для руд медно-полиметаллической формации. Присутствие кобальта (до 0,04 %) отмечено главным образом в сфалерите из Агдаринского месторождения. Вхождение меди в сфалерит в виде изоморфной примеси ограничено. Высокие концентрации меди в сфалерите, скорее всего, обусловлены включениями халькопирита.

ЛИТЕРАТУРА

БАЛАКИШИЕВА, Б.А. 1966. Геохимия кадмия в свинцово-цинковых месторождениях Азербайджана. В кн.: *Геохимия редких элементов*. Изд. АН Азерб. ССР, Баку.

БАРТОН, П.В. 1966. Химическая обстановка рудоотложения и проблемы переноса рудообразующих эле-

- ментов при низких температурах. В сб.: *Проблемы* эндогенных месторождений. ИЛ. Москва. 360.
- ГАВРИЛЮК, П.С. 1974. Геолого-структурные и физикохимические условия формирования Башкишлагского месторождения баритовых и полиметаллических руд (Малый Кавказ). Авт. канд. дисс. Баку. 32.
- ГЕЙДАРОВ, А.С., ЭФЕНДИЕВ, Г.Х., ЛАЖИНИНА, Н.Ф., АБДУЛЛАЕВА, Р.С. 1966. Редкие элементы руд Мехманинской группы полиметаллических месторождений. В кн.: *Геохимия редких элементов*. Изд. АН Азерб. ССР. Баку.
- ДОБРОВОЛЬСКАЯ, М.Г. 1989. Свинцово-цинковое оруденение (рудные формации, минеральные парагенезисы, особенности рудообразования). Наука. Москва. 216.
- ИЛЬЯСОВ, Н.Р. 1974, Геохимия золота и серебра в месторождениях и рудопроявлениях в одном из рудных полей Малого Кавказа. Авт. канд. дисс. Баку. 38.
- КАЛАНДАРОВ, Б.Г. 2004. Типоморфные особенности руд золото-полиметаллической формации (на примере Дагкесаманского месторождения). *Известия*

- *Бакинского Университета, серия естественных наук,* **3**.
- ПЕТРОВСКАЯ, Н.В. 1969. О типоморфизме самородного золота. В кн.: *Проблемы геологии минер. месторождений, петрологии и минералогии. Т.*11.
- ЧУХРОВ, Ф.В. 1969. Типоморфизм важнейшая проблема современной минералогии. В сб: *Типоморфизм минералов*. Наука. Москва. 3-14.
- ЭФЕНДИЕВ, Г.Х. 1957. Гидротермальный рудный комплекс северо-восточной части Малого Кавказа. Изд.АН Азерб.ССР. Баку.
- ЭФЕНДИЕВ, Г.Х., ГЕЙДАРОВ, А.С., АГАЕВА, Ф.И., КИСЛЯКОВА, Л.Е., БАБАЕВА, З.Э. 1966. Редкие элементы Гюмушлугского месторождения свинцовоцинковых руд. В кн.: *Геохимия редких элементов*. Изд. АН Азерб. ССР. Баку.
- RAMAZANOV, V.G., QƏLƏNDƏROV, B.H., ABBA-SOV, N.Ə., TƏHMƏZOVA, T.H. 2004. Ordubad filiz rayonu mis- və molibden porfir yataqlarında olan piritlərin tipomorf xüsusiyyətləri. *Bakı Universitetinin xəbərləri, Təbiət elmləri seriyası*, 2.

Рецензент: к.г.-м.н. С.Ф.Велизаде